
Supplementary information is available on Nature’s World-Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of Nature.

Acknowledgements

We thank S.C. Ying and D.A. Weitz for discussions. This work was supported by the National Science Foundation, the Petroleum Research Fund, and the Research Corporation. X.S.L. acknowledges the support of the A.P. Sloan Foundation. Correspondence and requests for materials should be addressed to A.P. (e-mail: pertsim@barus.physics.brown.edu).

Evolution of magna-poor continental margins from rifting to seafloor spreading

R. B. Whitmarsh *, G. Manatschal † & T. A. Minshull *

* Southampton Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
† CGS-EOST, Université Louis Pasteur, 1 rue Blessig, 67084 Strasbourg, France

The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid–state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward.

The west Iberia–Newfoundland conjugate margins experienced a final Early Cretaceous phase of rifting and seafloor spreading that started ~133 Myr ago. The Alpine Tethyan margins experienced a final Late Triassic/Early Jurassic rift phase presaging the Liguria–Piemonte ocean where seafloor-spreading magmatism began 160–165 Myr ago. Both the west Iberia and Alpine magma-poor margins are characterized by margin-parallel deep-water zones, apparently representing successive stages of margin evolution, that is, thinned continental crust dissected by low-angle detachment faults succeeded by exhumed sub-continental mantle, with oceanward-increasing mafic melt volumes, that merges into oceanic crust. We describe each zone in turn, adding evidence from margins in both areas, before presenting models to explain the observations.

The west Iberia margin exhibits tilted fault blocks bounded by west-facing normal faults. Under the slope and rise larger blocks lie 10–20 km apart over continental crust 20–30 km thick. Oceanward, wherever crustal blocks are 5–7 km thick, such faults are clearly listric (downward-flattening and concave upward), even penetrating the mantle, and closer together; the crust tapers oceanward to zero thickness within a distance of 50 km (Figs 1d and 2). Such blocks, where drilled by the Ocean Drilling Program (ODP), are capped by late Tithonian (~146 Myr ago) shallow-water sediments and therefore are continental crust. A marked change occurs in the mechanical response of the continental lithosphere to extension once the crust has been thinned to less than about 7 km.

In the southern Iberia abyssal plain (SIAP) three adjacent ODP boreholes (Sites 900, 1067 and 1068; Figs 1c and 2), near where the crust tapers to zero, yielded gabbro, amphibibolite, tonalite gneiss, anorthosite (all part of a <400-m-thick basement layer floored by a sub-horizontal tectonic crust/mantle contact) and serpentinized peridotite. The basement appears to be capped by a younger low-angle detachment fault that breaks out 6 km to the east and plunges into basement 14 km to the west. The layer contains pre-rift lower crustal rocks, underplated in Late/post-Hercynian time (270 ± 3 (±1σ) Myr ago), that later underwent ductile deformation (at 0.6–0.8 MPa) and cooling before exhumation at the seabed (~137 Myr ago).

In the Alps, the continental crust of the distal Adria margin appears as fault blocks and as isolated allochthons (masses of rock that have been tectonically moved from their places of origin) separated by sub-horizontal detachments from underlying mantle. This crust is mainly composed of Late to post-Hercynian granites intrusive into poly-metamorphic basement. Sporadically, underplated meta-gabbros exhumed from a pre-rift lower crustal level are observed which intruded the crust–mantle boundary during Late/post-Hercynian time. Pressure–temperature–time (P–T–t) data indicate that the crust–mantle boundary was rather cool (~550 °C, 0.9–1.0 MPa) at the onset of rifting, all structures genetically linked to the final phase of crustal extension, leading to formation of the zone of exhumed continental mantle (ZECM). Thus, the distal continental parts of the margins are dissected by listric detachment faults which either separate continental crustal blocks from mantle or occasionally penetrate the mantle. Where pre-rift lower crustal rocks are exhumed they frequently show mafic compositions and similar pre-rift P–T–t evolutions beginning with crustal underplating followed by isobaric cooling to 550 °C. Syn-rift melt products (contemporaneous with the rifting process) are absent. We estimate that durations of continental extension were, respectively, a few tens of Myr (at <5 mm yr⁻¹) for the Tethyan margins and ~10 Myr (final phase, at >3.5 mm yr⁻¹) off Iberia.

The ZECM in the SIAP is 40–170 km wide with distinctive geophysical characteristics. Morphologically, the basement surface identified on seismic reflection profiles may be divided into two regions of N–S-trending basement ridges and deep (~9 km) relatively low-relief basement (Fig. 1a and c); both narrow northward. Highly serpentinized peridotite was cored at four ODP sites mostly near the margins of the ZECM. Primary-phase chemistry and clinopyroxene trace-element compositions indicate heterogeneous mantle depleted by heterogeneous, less than 10%
partial melting, and percolated by mafic melts. Trace-element compositions are more like sub-continental or suprasubduction-zone mantle than abyssal (oceanic) mantle. Serpentinization began, at least locally, before seabed exhumation of the peridotite.

The SIAP ZECM has a seismic velocity structure which differs from those of the adjacent stretched continental and oceanic crusts (Fig. 1d). A 2–4-km-thick upper basement layer with a P-wave velocity of 4.5–7.0 km s\(^{-1}\) and a high velocity gradient \((\sim 1 \text{ s}^{-1})\) merges into a lower layer not more than 4 km thick with velocities of \(\sim 7.6 \text{ km s}^{-1}\) and a low velocity gradient \((<0.2 \text{ s}^{-1})\). Moho reflections are weak or absent. The top-basement velocity is lower than that of the adjacent continental crust, and the velocity in the lower layer is too high to represent magmatically intruded or underplated continental crust or even oceanic layer 3 (the lower oceanic crust). Therefore the velocity structure probably reflects decreasing mantle serpentinization with depth. Low-amplitude N–S magnetic anomalies (Fig. 1a, c and e) indicate that ZECM basement magnetizations are typically much lower than those of oceanic basement further west, and the spectral properties of the anomalies suggest that most source bodies, equated here with syn-rift mafic intrusions (for example, ref. 24), lie not at top basement but up to 6.5 km deeper. These observations suggest that the upper seismic layer contains little magmatic material, whereas the lower layer contains isolated N–S elongated magmatic intrusions which increase in volume oceanward (Fig. 1d). Although numerical models predict the addition of 3–5 km of melt to the ZECM we infer that, because the region of asthenospheric upwelling was relatively wide at this stage, very little decompression melting took place until the mantle viscosity structure approached that inferred to exist under a mid-ocean ridge.

In the Alps the sub-continental affiliation of mantle rocks is indicated by clinopyroxene Sr and Nd isotope compositions similar to many western Mediterranean sub-continental orogenic spinel lherzolites, by association with lower continental crust and by isolated continental allochthons overlying exhumed mantle. Sedimentary infill structures and serpentine clasts in post-rift Upper Jurassic deep-sea sediments indicate submarine exhumation. Deeper mantle rocks are encountered oceanwards. At the Platta nappe (sheet of rock thrust sideways over adjacent strata), gabbros \(160.9 \pm 0.5 \text{ Myr old were intruded into an already serpentinized peridotite}\) and provide direct evidence of syn-tectonic ZECM magmatism. Intrusion was immediately followed by emplacement of massive mid-ocean ridge basalt (MORB) pillows marking the onset of seafloor spreading.

Off Iberia, low-angle intrabasement ZECM faults have not been detected and deeply penetrating landward-dipping high-angle faults are imaged only rarely. In contrast, Alpine geology, supported by top-basement tectono-sedimentary breccias in several ODP boreholes, reveals that the basement surface often represents the footwall of a series of mantle detachment faults individually accommodating \(10–20 \text{ km offsets in which the hanging wall moved oceanward. Because the faults cap basement highs that have minor submarine relief, despite their large offset, and enlisting...
other arguments (see Fig. 2b legend; ref. 10), we suggest that mantle exhumation was accomplished by concave-downward faults shortly before the onset of seafloor spreading.

Off west Iberia the ZECM merges into the earliest oceanic crust near a margin-parallel basement peridotite ridge14 (Fig. 1d). High-amplitude linear margin-parallel magnetic anomalies immediately west of the peridotite ridge in the SIAP are consistent with seafloor spreading at 10 km yr\(^{-1}\), beginning around 126 Myr ago27. The seismic velocity structure gradually changes oceanwards to typically oceanic 10–20 km west of the peridotite ridge3. At ODP Site 1070, 20 km (representing ~2 Myr of spreading) oceanward of the peridotite ridge (Fig. 1d), we cored Late Aptian (112.2–116.9 Myr ago) sediments over pegmatite gabbro and depleted subcontinental serpentinized peridotite with gabbro veins21–22 without encountering basaltic rocks. The gabbro had an enriched mid-ocean-ridge basalt (E-MORB) source22. The pegmatite cooled below 500 °C at 119 ± 0.7 Myr ago23. Thus, although near Site 1070 we encounter geophysical characteristics of normal oceanic crust, the cores reveal subcontinental mantle that was intruded by MORB dykes, exhumed at the seafloor and then sedimented shortly afterwards. The dates imply that tectonism of the earliest ‘oceanic’ crust continued after its emplacement over a region tens of kilometres wide.

In the Alps, oceanic crust is represented by undeformed MORB pillow lavas that thicken oceanwards. Generally, just oceanward of the edge of the continental crust, basaltic rocks form isolated bodies less...
MORB isotopic signature overlie tectonically exhumed subcontinental mantle.

Thus, generally, after the break-up of continental crust, mafic intrusives and/or extrusives increase in volume oceanwards across the ZECM. They have a MORB signature, yet intrude and overlie subcontinental mantle. Eventually, such a ‘crust’ can acquire a geophysically oceanic signature possibly even before extrusives/intrusives of oceanic layer 2 (upper oceanic crust) are widespread.

We now explain how the upper ~7 km of the ZECM evolves into oceanic crust formed by seafloor spreading, before we present a broader lithospheric-scale perspective. In a late stage of rifting, when the continental crust was already locally thinned to about 7 km (Fig. 2e), extension became focused within the future distal margin and was accommodated by detachment faulting (Fig. 2d to b). Exhumation of subcontinental mantle was mainly accommodated by concave-downward faults (Fig. 2b to a). The crust and uppermost mantle underwent brittle deformation and extension was dominated by simple shear. Seafloor spreading, heralded by an oceanward-thickening emplacement of MORB melt over, and into, depleted subcontinental mantle, eventually generated a thin oceanic crust (Fig. 1d). Tectonism remained active over a broad zone at least until slow seafloor-spreading had started. Extension rates increased by factors of 2–3 from the latest continental rifting to the ocean-continent transition of West Iberia from a deformed mid-ocean ridge (MOR) segment.

Our conceptual lithospheric-scale model (Fig. 3) exhibits the well known sequential modes of extension from pure shear to simple shear to slow seafloor-spreading. However, only now can we characterize the simple-shear phase, infer its ‘genetic’ link to the preceding pure-shear phase and understand its link to the subsequent seafloor-spreading phase. Rifting began with an isostatically equilibrated ~30-km-thick continental crust (Fig. 3a). Initial rifting was controlled by ductile flow of the lower crust, as suggested by some numerical models28, and associated with subsidence3. Rift basins were bounded by listric faults that levelled out at mid-crustal levels, where the crust was weaker, and decoupled upper crust and upper mantle deformation. Rifting was distributed over the entire future margin (Fig. 3b). The extending crust cooled during ongoing rifting. Magmatism was essentially absent during this initial stage of rifting and the rift was, on a lithospheric scale, symmetric.

Mechanically or thermally induced weaknesses in the upper mantle, possibly resulting from pre-rift underplating, controlled the initial location of upper mantle necking which can be observed from crustal deformation, as in some numerical models (see, for example, ref. 28). The weaknesses guided the ascent of the asthenosphere, which in turn controlled the location and evolution of the latest rifting and eventual continental break-up (Fig. 3c). The transition from symmetric non-magmatic rifting to seafloor spreading included a transient phase of simple-shear dominated, and partly asymmetric, continental rifting that coincided with the onset of systematically increasing magmatism. This transition was characterized by the localization of extension along continental crust and even upper mantle detachment faults and then along top-to-the-ocean and concave-downward faults, leading to the exhumation of the ZECM (Fig. 3c). Finally, the ascending but narrowing asthenospheric mantle (Fig. 3d) led to the typical focused magmatism and tectonism of a mid-ocean ridge.

Although our model involves mechanisms of tectonic deformation that are not yet fully understood or proved, it does explain a wide range of observations. It predicts low-angle detachments in continental crust (Fig. 2a), a systematic oceanward increase in synkinematic MORB extrusives/intrusives across the ZECM (Fig. 3d) and a systematic trend from shallow to deeper exhumed subcontinental mantle rocks across a reconstructed conjugate pair of ZECMs in association with a rotation of mantle rock structures (Fig. 3c).
Mitochondrial protein phylogeny joins myriapods with chelicerates

Ul Wook Hwang*, Markus Friedrich†, Diethard Tautz*, Chan Jong Park* & Won Kim†

* Department of Biology, Teachers College, Kyungpook National University, Taegu 702-701, Korea
† School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
‡ Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
§ Abteilung für Evolutionsgenetik, Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany

The animal phylum Arthropoda is very useful for the study of body plan evolution given its abundance of morphologically diverse species and our profound understanding of Drosophila development1. However, there is a lack of consistently resolved phylogenetic relationships between the four extant arthropod subphyla, Hexapoda, Myriapoda, Chelicerata and Crustacea. Recent molecular studies2–4 have strongly supported a sister group relationship between Hexapoda and Crustacea, but have not resolved the phylogenetic position of Myriapoda and Chelicerata. Here we sequence the mitochondrial genome of the centipede species Lithobius forficatus. The Lithobius mitochondrial genome is 15,437 base pairs (bp) (details will be given elsewhere). Gene content and arrangement correspond to that of conservatively evolving arthropod mitochondrial genomes with two exceptions. Most crustacean and insect mitochondrial genomes differ from Lithobius with regard to the position of the transfer RNA Leu(UUR) gene, which in crustaceans is located between the COXI and COXII genes and in Lithobius between the tRNA Leu(CUN) and ND1 genes. This is consistent with the previous demonstration that the COXI/tRNA Leu(UUR)/COXII arrangement is a synapomorphy of the Pancrustacea².

Another difference concerns the position of the tRNA Tyr gene, which in most arthropods resides between tRNA Trp and tRNA Tyr (Fig. 1), but in Lithobius it lies within the non-coding region of the

mitochondrial genome. The relative location of tRNA Trp (W), tRNA Tyr (Y) and tRNA Cys (C) is shown for representative arthropod and outgroup species with similar arrangements. Multiple coding units separating tRNA Trp and tRNA Tyr in Pagurus are indicated by boxes. Transcription units in clear boxes code from left to right, those in shaded boxes code from right to left. The mollusc Euhadra henckeli is the only non-arthropod species known so far that exhibits this arrangement.

Figure 1 Phylogenetic distribution of tRNA Tyr arrangements in arthropod mitochondrial genomes. The relative location of tRNA Trp (W), tRNA Tyr (Y) and tRNA Cys (C) is shown for representative arthropod and outgroup species with similar arrangements. Multiple coding units separating tRNA Trp and tRNA Tyr in Pagurus are indicated by boxes. Transcription units in clear boxes code from left to right, those in shaded boxes code from right to left. The mollusc Euhadra henckeli is the only non-arthropod species known so far that exhibits this arrangement.

Acknowledgements

We thank the Shipboard Scientific Parties of ODP Leg 149 and Leg 173 and those aboard RRS Discovery cruise 215. We thank the UK Natural Environment Research Council, The Royal Society of London and the Swiss National Science Foundation for support.

Correspondence and requests for materials should be addressed to R.B.W.

(e-mail: rbw@soc.soton.ac.uk).

Mitochondrial protein phylogeny joins myriapods with chelicerates

Ul Wook Hwang*, Markus Friedrich†, Diethard Tautz*, Chan Jong Park* & Won Kim†

* Department of Biology, Teachers College, Kyungpook National University, Taegu 702-701, Korea
† School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
‡ Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
§ Abteilung für Evolutionsgenetik, Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany

The animal phylum Arthropoda is very useful for the study of body plan evolution given its abundance of morphologically diverse species and our profound understanding of Drosophila development¹. However, there is a lack of consistently resolved phylogenetic relationships between the four extant arthropod subphyla, Hexapoda, Myriapoda, Chelicerata and Crustacea. Recent molecular studies²–⁴ have strongly supported a sister group relationship between Hexapoda and Crustacea, but have not resolved the phylogenetic position of Myriapoda and Chelicerata. Here we sequence the mitochondrial genome of the centipede species Lithobius forficatus. The Lithobius mitochondrial genome is 15,437 base pairs (bp) (details will be given elsewhere). Gene content and arrangement correspond to that of conservatively evolving arthropod mitochondrial genomes with two exceptions. Most crustacean and insect mitochondrial genomes differ from Lithobius with regard to the position of the transfer RNA Leu(UUR) gene, which in crustaceans is located between the COXI and COXII genes and in Lithobius between the tRNA Leu(CUN) and ND1 genes. This is consistent with the previous demonstration that the COXI/tRNA Leu(UUR)/COXII arrangement is a synapomorphy of the Pancrustacea².

Another difference concerns the position of the tRNA Tyr gene, which in most arthropods resides between tRNA Trp and tRNA Tyr (Fig. 1), but in Lithobius it lies within the non-coding region of the