Normal distribution (mu, sigma^2)

The ubiquitousness of the normal distribution is clearly not with mean 0 and standard deviation one; for example, many data such as heights and weights are never negative. But if data is normally distributed, it can be transformed to have mean 0 and standard deviation 1, and the transformed data will be standard normal for which the tables can be used. In particular, if some data \(\{x\} \) are normally distributed, the corresponding \(\{z\} \) will be normal with mean 0 and standard deviation 1 where the correspondence between the \(\{x\} \) and \(\{z\} \) is given by \(z = (x - \mu)/\sigma \). Such \(z \)'s are called z-scores. By subtracting \(\mu \), the mean has been shifted to 0, by dividing by \(\sigma \) the standard deviation has been changed to 1.

- **Relative frequency of being in an interval**
- **Cutoff that specified frequency is below**
- **Summary**

Relative frequency of being in an interval

Assume that height is normally distributed with mean=57 and standard deviation = 5. What fraction of people are between the heights of 55 and 60 inches? The z-scores corresponding to 55 and 60 are \((55-57)/5 = -0.4 \) and \((60-57)/5 = 0.6 \). At this stage the calculations are those for the standard normal distribution. From the table we get \(-0.4\) corresponds to 0.3446, \(0.6\) corresponds to 0.7257, hence the area between is \(0.7257 - 0.3446 = 0.3811\). The following figure may clarify what we have done.

Cutoff that relative frequency is below

If height has a mean of 67 and a standard deviation of 5, we can also ask what height 20% of the students will be shorter than. The first step is to convert the area (relative frequency) to a z-value using the table. Since we have specified the area to the left, we look for .2 in the body of the table, and find .2005 which corresponds to the z-value -.84.
Then we must rearrange the formula $z = \frac{x - \mu}{\sigma}$ to $x = \mu + (z)(\sigma)$ to get back to inches from standard deviation units. $67 + (-.84)(5) = 62.8$. (Drawing a picture may help you remember when to add or subtract.)

Summary

If data is normally distributed, but the mean is not 0 and/or the standard deviation is not one, there are two stages to problems:

- If the interval is specified and you are looking for the relative frequency (probability): first convert from x-values to z-scores, then use the normal table to find the area (relative frequency, probability).
- If the relative frequency (probability) is specified, first use the normal table to find the z-values, then convert the z-values to x-values.

Applets: A good applet for showing the correspondence between raw data and z-scores by Gary McClelland is linked [here](http://cs.uni.edu/~campbell/stat/z-score.html) (you need to hit enter after entering your values). An alternative version is also available.

Competencies: If height is normally distributed with mean 69 inches and standard deviation 4 inches ($N(69, 4^2)$), what fraction of the people are between 60 and 70 inches in height?

If height is normally distributed with mean 69 inches and standard deviation 4 inches ($N(69, 4^2)$), what height are 10% of the people taller than?

Questions?